305(b) - purpose

Clean Water Act requires each state to conduct water quality surveys to determine if its waterways are:

- healthy
- sufficient quality to meet their designated uses
305(b) - report

- submitted every two years
- uses chemical data from STORET database, biology data from the Statewide Biological database, and fish consumption advisory data
- prepared by the Basin Planning and Management Section
305(b) Methodology - activities

12 steps to complete assessment

1. subdivide State into watersheds
2. identify waterbody type
3. identify waterbody classification and designated use
4. inventory chemical data - STORET
5. inventory biological data - Statewide Biologic Database
6. inventory fish consumption advisory data - Mercury Project
305(b) Methodology - activities

12 steps to complete assessment (cont’d)

7. calculate Index - WQI or TSI
8. identify exceedances of water quality standards
9. status determination
10. apply confidence filters
11. use determination status
12. other EPA reporting requirements -
 • screen for poor water quality values (causes)
 • nonpoint source survey (sources)
 • analyze trends
1. **Subdivide state into watersheds**
 - 52 major river basins
 - 4,934 watersheds
Watershed:

- a waterbody and feeder streams that flow to it
- analytic unit for assessing surface water quality
- named for the major waterbody located within it
- water quality stations located within a given watershed are used to assess that watershed

305(b) Methodology - watershed assignment and classification
Winter Park Chain of Lakes

Howell Lake
Howell Creek
Lake Maitland
Lake Minnehaha
Lake Osceola
Lake Mizell
Lake Jessup

Foose polygon
14 miles long
40 square miles
305(b) Methodology - watershed assignment and classification

2. **Identify waterbody type**
 - watershed identified by the predominant type of waterbody located within it
 - *i.e.*, stream, black water stream, lake, estuary or spring
 - watershed determined by visual inspection of data or GIS mapping
 - water quality assumed to be homogeneous in each waterbody
305(b) Methodology - *watershed assignment and classification*

<table>
<thead>
<tr>
<th>Waterbody type</th>
<th>Number of waterbodies</th>
<th>Characteristics</th>
<th>Assessment technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>3,359</td>
<td></td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>Stream-black water</td>
<td>73</td>
<td>Color > 275 platinum color units, pH< 6</td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>Lake</td>
<td>556</td>
<td></td>
<td>Trophic State Index</td>
</tr>
<tr>
<td>Spring</td>
<td>88</td>
<td>Low dissolved oxygen</td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>Estuary</td>
<td>458</td>
<td>Conductivity > 5000 uhmos, chloride > 1500 ppm</td>
<td>Trophic State Index</td>
</tr>
</tbody>
</table>
305(b) Methodology - watershed assignment and classification

3. *Identify water body classifications and designated use for each waterbody*
 - functional classifications are applied to all Florida surface waters (Class I through V)
 - standards and water quality criteria have been established for each class of waterbody under Chapter 62-302
305(b) Methodology - watershed assignment and classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Function</th>
<th>Number of watersheds</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Drinking Water</td>
<td>46</td>
<td>Usually lakes or reservoirs</td>
</tr>
<tr>
<td>II</td>
<td>Shellfish harvesting</td>
<td>124</td>
<td>Estuarine</td>
</tr>
<tr>
<td>III - Freshwater</td>
<td>Wildlife and recreation</td>
<td>3989</td>
<td></td>
</tr>
<tr>
<td>III - Marine</td>
<td>Wildlife and recreation</td>
<td>374</td>
<td>Chlorides > 1500 ppm</td>
</tr>
<tr>
<td>IV</td>
<td>Agriculture</td>
<td>1</td>
<td>Everglades area</td>
</tr>
<tr>
<td>V</td>
<td>Industrial</td>
<td>0*</td>
<td></td>
</tr>
</tbody>
</table>

* Fenholloway River changed to Class III in 1997
4. Inventory chemical data

STORET

- 9,200 STORET stations sampled since 1980
- in 1,900 of the 4,934 watersheds in Florida
- by 33 agencies
- current data defined as 1993-1997
- historic data defined as 1980 - 1992
Major agencies collecting STORET stations since 1970
5. Inventory biological data

Statewide Biological database

- SCI - Stream condition index
- uses 7 different indices based on types and numbers of macroinvertebrates present
 - if less than 20th percentile, then poor
 - if greater than 70th percentile, then good
- have other historical and new bioassessment data that needs to be integrated into assessment
Biological Index

<table>
<thead>
<tr>
<th>METRIC Lookup</th>
<th>METRIC</th>
<th>REGION</th>
<th>SEASON</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Total Taxa</td>
<td>TOTAXA</td>
<td>Panhandle</td>
<td>Summer</td>
<td>>=31</td>
<td>30.0-16.0</td>
<td><16</td>
</tr>
<tr>
<td>No. of EPT Taxa</td>
<td>EPTTAXA</td>
<td>Panhandle</td>
<td>Summer</td>
<td>>=7</td>
<td>6.0-4.0</td>
<td><4</td>
</tr>
<tr>
<td>No. of Chironomidae Taxa</td>
<td>CHIRTAXA</td>
<td>Panhandle</td>
<td>Summer</td>
<td>>=9</td>
<td>8.0-5.0</td>
<td><5</td>
</tr>
<tr>
<td>% Dominant Taxon</td>
<td>PERDOM</td>
<td>Panhandle</td>
<td>Summer</td>
<td><=22</td>
<td>23-61</td>
<td>>61</td>
</tr>
<tr>
<td>% Diptera</td>
<td>PERDIP</td>
<td>Panhandle</td>
<td>Summer</td>
<td>.</td>
<td><=50</td>
<td>>50</td>
</tr>
<tr>
<td>Florida Index</td>
<td>FLAIND</td>
<td>Panhandle</td>
<td>Summer</td>
<td>>=16</td>
<td>15-8</td>
<td><8</td>
</tr>
<tr>
<td>% Filters</td>
<td>PERFIL</td>
<td>Panhandle</td>
<td>Summer</td>
<td>>=12</td>
<td>11.0-6.0</td>
<td><6</td>
</tr>
</tbody>
</table>

- **Meets**
- **Partially**
- **Does not meet**
305(b) Methodology - database development

6. Inventory fish consumption advisory data

Mercury Survey

- In 1989, FGFFC, FDHRS, and FDEP initiated a project to sample fish tissue for mercury concentration
- Approximately one million acres of fresh water are “no consumption” areas (do not support their designated use)
- Approximately one million acres of fresh water have “limited consumption” advisories (partially support their designated use)
Fish consumption advisories (mercury)

- Limited consumption (fair)
- No consumption (poor)
Fish Consumption Advisory

<table>
<thead>
<tr>
<th>Mercury in fish tissue</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5 mg/kg</td>
<td>Meets</td>
<td>0.5-1.5 mg/kg (limited consumption)</td>
<td>Meets</td>
</tr>
<tr>
<td>0.5-1.5 mg/kg</td>
<td>Partially</td>
<td>Meets</td>
<td></td>
</tr>
<tr>
<td>>1.5 mg/kg</td>
<td>Does not meet</td>
<td>Meets</td>
<td></td>
</tr>
</tbody>
</table>
7. **Calculate index**
 a. **Water Quality Index (WQI)**
 - developed and used in 1988 305(b) report
 - a single numeric value condensed from several water quality parameters
 - applies to streams, black waters, and springs
 - annual median water quality values derived from STORET chemical data
 - includes five (5) categories of measurements:
7. Calculate index - indices are primarily designed to address impacts from nutrients given narrative nutrient criteria

a. Water Quality Index (WQI)

Five Categories:

- Water Clarity
 - Turbidity and Total suspended solids
- Dissolved Oxygen
- Oxygen demanding substances
 - BOD, COD, and TOC
- Nutrients
 - Total N, Nitrate, and Total P
- Bacteria
 - Total Coliform and Fecal Coliform
7. Calculate index
 a. Water Quality Index (WQI)
 ‣ each parameter assigned a value between 0 and 99 based on the percentile distribution of stream water quality (Typical Water Quality Values, from 1989)
 ‣ values averaged to obtain an overall index value for each category
 ‣ each category are averaged to obtain a final WQI rating (good = 0-44, fair = 45-59, or poor = 60-99)
Stream phosphorus percentiles for 1980 and 1990

1980’s

1990’s
Chemistry Index

Water Quality Index Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Best quality</th>
<th>Worst quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>WQI Unit</td>
<td>10 20 30 40 50</td>
<td>60 70 80 90</td>
</tr>
<tr>
<td>Category: Water clarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity JTU</td>
<td>1.50 3.00 4.00 4.50</td>
<td>5.20 8.80 12.20 16.50</td>
</tr>
<tr>
<td>Total suspended solids milligrams per liter (mg/l)</td>
<td>2.00 3.00 4.00 5.50</td>
<td>6.50 9.50 12.50 18.00 26.50</td>
</tr>
<tr>
<td>Category: Dissolved oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen mg/l</td>
<td>8.00 7.30 6.70 6.30</td>
<td>5.80 5.30 4.80 4.00</td>
</tr>
<tr>
<td>Category: Oxygen demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical oxygen demand mg/l</td>
<td>0.80 1.00 1.10 1.30</td>
<td>1.50 1.90 2.30 3.30</td>
</tr>
<tr>
<td>Chemical oxygen demand mg/l</td>
<td>16.00 24.00 32.00 38.00</td>
<td>46.00 58.00 72.00 102.00</td>
</tr>
<tr>
<td>Total organic carbon mg/l</td>
<td>5.00 7.00 9.50 12.00</td>
<td>14.00 17.50 21.00 27.50</td>
</tr>
<tr>
<td>Category: Nutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nitrogen mg/l as N</td>
<td>0.55 0.75 0.90 1.00</td>
<td>1.20 1.40 1.60 2.00</td>
</tr>
<tr>
<td>Nitrate plus nitrite mg/l as N</td>
<td>0.01 0.03 0.05 0.07</td>
<td>0.10 0.14 0.20 0.32</td>
</tr>
<tr>
<td>Total phosphorus mg/l as P</td>
<td>0.02 0.03 0.05 0.07</td>
<td>0.09 0.16 0.24 0.46</td>
</tr>
<tr>
<td>Category: Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total coliform #/100 milliliters (ml)</td>
<td>100.00 150.00 250.00 425.00</td>
<td>600.00 1100.00 1600.00 3700.00</td>
</tr>
<tr>
<td>Fecal coliform #/100 ml</td>
<td>10.00 20.00 35.00 55.00</td>
<td>75.00 135.00 190.00 470.00</td>
</tr>
</tbody>
</table>

meets partially does not meet
7. Calculate index
 b. Trophic State Index (TSI)
 ‣ applies to lakes and estuaries
 ‣ measures the potential for algal or aquatic weed growth - total nitrogen, total phosphorus, chlorophyll
 ‣ a ten (10) unit change in the index represents a halving or doubling of algal biomass
 ‣ overall TSI is an average of chlorophyll and nutrient indices
7. Calculate index

b. Trophic State Index (TSI)

- Trophic State Index for lakes based on:
 - Chlorophyll - Florida lake index value
 - developed from a regression analysis of data collected from 313 Florida lakes
 - Nutrients - Nutrient Trophic State Index Value
 - based on phosphorus and nitrogen concentrations and the limiting nutrient concept
305(b) Methodology - data analysis

7. Calculate index

b. Trophic State Index (TSI)

Limiting Nutrient Concept

Identifies a lake as phosphorus limited if the nitrogen-to-phosphorous concentration ratio is greater than 30, nitrogen limited if the ratio is less than 10, and balanced if the ratio is between 10 and 30.
305(b) Methodology - data analysis

7. Calculate index
 b. Trophic State Index (TSI)
 ‣ Trophic State Index for Estuaries
 ‣ Rating scale is lower for each category
 ‣ Reflects a lower desirable upper limit for chlorophyll
7. **Calculate index**

* b. **Trophic State Index (TSI)**

 ▶ Trophic State Index

<table>
<thead>
<tr>
<th>Rating</th>
<th>Lake</th>
<th>Estuary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0 - 59</td>
<td>0 - 49</td>
</tr>
<tr>
<td>Fair</td>
<td>60 - 69</td>
<td>50 - 59</td>
</tr>
<tr>
<td>Poor</td>
<td>70 - 100</td>
<td>60 - 100</td>
</tr>
</tbody>
</table>

305(b) Methodology - data analysis
Lake Trophic State Index Values

Chemistry Index

<table>
<thead>
<tr>
<th>Tsi</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll ug/l</td>
<td>0.3</td>
<td>0.6</td>
<td>1.3</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Total phosphorus mgP/l</td>
<td>0.003</td>
<td>0.005</td>
<td>0.009</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
<td>0.12</td>
<td>0.2</td>
<td>0.34</td>
<td>0.58</td>
</tr>
<tr>
<td>Total nitrogen mg N/l</td>
<td>0.06</td>
<td>0.1</td>
<td>0.16</td>
<td>0.27</td>
<td>0.45</td>
<td>0.7</td>
<td>1.2</td>
<td>2.0</td>
<td>3.4</td>
<td>5.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

- **meets**
- **partially**
- **does not meet**
8. Identify exceedances of water quality criteria

- Florida's surface water quality criteria are used to assess whether a pollutant concentration in a watershed is high enough to preclude the designated use of the waterbody.
- Exceedances of metal’s and conventional pollutants are determined using chemical water quality data from STORET.
- Based on the number of violations in last 3 years.
8. Identify exceedances of water-quality standards

- parameters evaluated:
 - Conventional pollutants
 - Dissolved oxygen
 - Chlorides
 - Ammonium
 - Metals
 - Arsenic
 - Aluminum
 - Cadmium
 - Chromium
 - Iron
 - Lead
 - Mercury
 - Nickel
 - Selenium
 - Silver
 - Thallium
 - Zinc

305(b) Methodology - data analysis
Determining water quality

(based on exceeded standards over a three-year period)

<table>
<thead>
<tr>
<th></th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional pollutants</td>
<td>< 10%</td>
<td>11 - 25 %</td>
<td>> 25%</td>
</tr>
<tr>
<td>Metals, unionized ammonia, chloride, cyanide, pesticides</td>
<td><= 1 sample</td>
<td>≥ 10%</td>
<td>> 10%</td>
</tr>
<tr>
<td>Bacteria</td>
<td>0</td>
<td>≥ 10%</td>
<td>> 10%</td>
</tr>
</tbody>
</table>
9. **Status determination**

- a single, simple averaging, over-all water quality rating for a watershed
- each assessment value is given a score
 - Good quality - 1
 - Fair quality - 3
 - Poor quality - 5
- Score chemistry, biology and fish consumption
9. Status determination

- overall average is calculated
 - Good - 1 to 2
 - Fair - 2 to 4
 - Poor - 4 to 5

- result is a status rating representing the present status for each watershed with sufficient data for assessment

- does not address data sufficiency, simply assesses whatever data are present

- not used for Use determination, which is basis for 303(d) list
10. Apply confidence filters

- A minimum of three “samples” (a sample is defined as two sampling events: one summer and one winter) is required for each watershed instead of only one sample. (Note the 3 samples could be taken in 1 year from 3 different stations or from 1 station sampled over 3 years.)

- Data from three or more Water Quality Index (WQI) categories (water clarity, DO, oxygen demanding substances, nutrients, and bacteria) are required to determine a WQI.

- For the oxygen demanding substances category of the WQI, if BOD data are available, COD and/or TOC will not be used.
305(b) Methodology - conclusions

11. Use designation determination

- results reported as
 - Meets Designated Use
 - Partially Meets Designated Use
 - Does Not Meet Designated Use

- result is a rating representing the present use designation for each watershed with sufficient data for assessment

- Note - EPA requires if biology and chemistry indicate poor quality, then the index is set to does not meet.
11. Use designation determination

- Assessment Components

- Chemistry Index
 - Stream WQI or Lake/estuary TSI

- Chemistry Violations
 - conventional
 - metals

- Biology Index

- Fish Contamination
The Assessment Calculation for Chemistry Passing Confidence Filter

- **Chemistry Index**
 - Stream WQI: good 1
 - Lake/estuary TSI

- **Chemistry Violations**
 - conventionals: fair 3
 - metals: good 1

- **Biology Index**: good 1

- **Fish Contamination**: fair 3

Status = \((1 + (3 + 1)/2 + 1 + 3)/4 = 7/4 = 1.75 = \text{good}

305(b) Use designation = Meets
The Assessment Calculation for Chemistry Not Passing Confidence Filter

- **Chemistry Index***
 - Stream WQI good 1
 - Lake/estuary TSI

- **Chemistry Violations**
 - conventionals fair 3
 - metals good 1

- **Biology Index** poor 5

- **Fish Contamination** fair 3

305(b) Use designation = Does not Meet Use (because Biology is poor)

* Not used because not enough samples were collected to pass confidence filter.
The Assessment Calculation

- **Chemistry Index**
 - Stream WQI: good 1
 - Lake/estuary TSI

- **Chemistry Violations**
 - conventionals: fair 3
 - metals: good 1

- **Biology Index**: good 1

- **Fish Contamination**: fair 3

Overall call = \(\frac{(1 + (3+1/2)+ 1 + 3)/4}{4} = \frac{7}{4} = 1.75 = \text{good} \)

305(b) Use designation = Meets
12. **Other EPA reporting requirements - Screen for poor water quality (causes)**

- used to identify poor water quality
- compare water quality value to index criteria
 - used in eBASE to color code individual water quality measurements
305(b) Methodology - source determination

12. Other EPA reporting requirements - nonpoint source pollution data (sources)

1994 update of 1988 Survey

- In 1988, FDEP qualitatively assessed the effect of nonpoint pollution on Florida’s waters via a questionnaire sent to all major state agencies.
- Received 300-400 respondents from 150 agencies.
- Identified: nonpoint sources of pollution, pollutants, symptoms (fish kills & algal blooms).
- Updated survey in 1994.

1998 305(b) - used the pollution source information to identify sources (e.g. agriculture or urban runoff)
13. Other EPA reporting requirements - analyze trends

- trends determined by utilizing:
 - water quality measurements for individual parameters and
 - overall Stream Water Quality Index (streams, black water streams and springs) or
 - overall Trophic State Index (lakes and estuaries) for watersheds.
 - determined for watersheds with at least 5 years of data between 1988 and 1997; total of 945 statewide
13. Other EPA reporting requirements - analyze trends

- uses Spearman Ranked Correlation Coefficient
- determined by comparing improved and degraded water quality measurements
- annual median values for sampling stations are analyzed for changes
- if a waterbody shows no trend, or if just one indicator shows a trend, then the trend is classified as “no change”
305(b) Methodology - acknowledged weaknesses

- TSI for Estuaries based on Lakes
 - need estuarine-specific index
 - doesn’t differentiate between different types of estuaries
- Lake TSI not regionally based and doesn’t address nuisance aquatic vegetation
- WQI for streams not regionally based and criteria for good, fair, and poor (particularly fair) are questionable
305(b) Methodology - acknowledged weaknesses

(continued)

• Need to incorporate historical bioassessment data and data from BioRecons
• Uses mean Dissolved Oxygen (DO) values
 – doesn’t adequately address low DO at depth
 – high DO from algal blooms skew data
 • could use percent DO saturation
• Doesn’t address some designated uses
 – shellfish and beach closing
305(b) Methodology - Other Key Issues

- Confidence in assessment
 - frequency and number of samples
- Should we composite metrics or have independent applicability
- How to address natural perturbations and variability